Schulinterner Lehrplan des St.-Ursula-Gymnasiums Attendorn zum Kernlehrplan für die gymnasiale Oberstufe

Chemie - Einführungsphase

1. Übersichtsraster Unterrichtsvorhaben in der EF

Einfül	nrungsphase
<u>Unterrichtsvorhaben I:</u>	<u>Unterrichtsvorhaben II:</u>
Kontext : Nicht nur Graphit und Diamant – Erscheinungsformen des Kohlenstoffs	Kontext: Vom Alkohol zum Aromastoff
Nonenstons	Schwerpunkte übergeordneter Kompetenzerwartungen:
Schwerpunkte übergeordneter Kompetenzerwartungen:	UF2 Auswahl
UF4 Vernetzung	UF3 Systematisierung
• E6 Modelle	E2 Wahrnehmung und Messung
E7 Arbeits- und Denkweisen	E4 Untersuchungen und Experimente
K3 Präsentation	K 2 Recherche
	K3 Präsentation
Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen	B1 Kriterien
Inhaltlicher Schwerpunkt:	B2 Entscheidungen
w Nanochemie des Kohlenstoffs	Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen
	Inhaltlicher Schwerpunkt:
Zeitbedarf: ca. 8 Std. à 45min	w Organische (und anorganische) Kohlenstoffverbindungen
	Zeitbedarf: ca. 38 Std. à 45 min
<u>Unterrichtsvorhaben III:</u>	<u>Unterrichtsvorhaben IV:</u>
Kontext: Kohlenstoffdioxid und das Klima – Die Bedeutung der Ozeane	Kontext: Methoden der Kalkentfernung im Haushalt
Schwerpunkte übergeordneter Kompetenzerwartungen:	Schwerpunkte übergeordneter Kompetenzerwartungen:
E1 Probleme und Fragestellungen	UF1 Wiedergabe
E4 Untersuchungen und Experimente	UF3 Systematisierung
K4 Argumentation	E3 Hypothesen
B3 Werte und Normen	E5 Auswertung
B4 Möglichkeiten und Grenzen	K1 Dokumentation
Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen	
	Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen
Inhaltliche Schwerpunkte:	
w (Organische und) anorganische Kohlenstoffverbindungen	

w Gleichgewichtsreaktionen	Inhaltlicher Schwerpunkt:	
w Stoffkreislauf in der Natur	w Gleichgewichtsreaktionen	
Zeitbedarf: ca. 22 Std. à 45 min	Zeitbedarf: ca. 18 Std. à 45 min	
Summe Einführungsphase: 86 Stunden		

2.1.2 Konkretisierte Unterrichtsvorhaben Einführungsphase

Einführungsphase – Unterrichtsvorhaben I

Kontext: Nicht nur Graphit und Diamant – Erscheinungsformen des Kohlenstoffs

Basiskonzepte (Schwerpunkt):

Basiskonzept Struktur – Eigenschaft

Schwerpunkte übergeordneter Kompetenzerwartungen:

Kompetenzbereich Umgang mit Fachwissen:

 bestehendes Wissen aufgrund neuer chemischer Erfahrungen und Erkenntnisse modifizieren und reorganisieren (UF4).

Kompetenzbereich Erkenntnisgewinnung:

- Modelle begründet auswählen und zur Beschreibung, Erklärung und Vorhersage chemischer Vorgänge verwenden, auch in einfacher formalisierter oder mathematischer Form (E6).
- an ausgewählten Beispielen die Bedeutung, aber auch die Vorläufigkeit naturwissenschaftlicher Regeln, Gesetze und Theorien beschreiben (E7).

Kompetenzbereich Kommunikation:

• chemische Sachverhalte, Arbeitsergebnisse und Erkenntnisse adressatengerecht sowie formal, sprachlich und fachlich korrekt in Kurzvorträgen oder kurzen Fachtexten darstellen (K3).

Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen

Inhaltlicher Schwerpunkt:

Nanochemie des Kohlenstoffs.

Zeitbedarf: ca. 8 Std. à 45 Minuten

Einführungsphase – Unterrichtsvorhaben I

Kontext: Nicht nur Graphit und Diamant – Erscheinungsformen des Kohlenstoffs				
Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen				
Inhaltliche Schwerpunk	te:	Schwerpunkte übergeordneter Kompetenzerwartungen:		
 Nanochemie des 	Kohlenstoffs	UF4 Vernetzung		
		E6 Modelle		
		E7 Arbeits- und Denkweisen		
		K3 Präsentation		
Zeitbedarf: 8 Std. à 45 M	linuten	Basiskonzept (Schwerpunkt):		
		Basiskonzept Struktur – Eigenschaft		
Sequenzierung inhaltlicher Aspekte	Konkretisierte Kompetenzerwartungen des Kernlehrplans	Lehrmittel/ Materialien/ Methoden	Verbindliche Absprachen	
	Die Celeillerieren und Celeiler		Didaktisch- methodische	
	Die Schülerinnen und Schüler		Anmerkungen	
Graphit, Diamant und	nutzen bekannte Atom- und	1. Test zur Selbsteinschätzung	Der Einstieg dient	
mehr	Bindungsmodelle zur Beschreibung	Atombau, Bindungslehre,	zur Angleichung der	
 Modifikation 	organischer Moleküle und	Kohlenstoffatom, Periodensystem	Kenntnisse zur	
 Elektronenpaar- 	Kohlenstoffmodifikationen (E6).		Bindungslehre, ggf.	
bindung			muss	
 Strukturformeln 	stellen anhand von Strukturformeln		Zusatzmaterial zur	
	Vermutungen zu Eigenschaften		Verfügung gestellt	
	ausgewählter Stoffe auf und schlagen		werden.	
	geeignete Experimente zur Überprüfung	2. Gruppenarbeit "Graphit, Diamant und		
	vor (E3).	Fullerene"	Beim Graphit und	
			beim Fulleren	
	erläutern Grenzen der ihnen bekannten		werden die Grenzen	
	Bindungsmodelle (E7).		der einfachen	
			Bindungsmodelle	
1	beschreiben die Strukturen von Diamant		deutlich. (Achtung:	

	und Graphit und vergleichen diese mit neuen Materialien aus Kohlenstoff (u.a. Fullerene) (UF4).		ohne Hybridisierung)
Nanomaterialien - Nanotechnologie - Neue Materialien - Anwendungen - Risiken	recherchieren angeleitet und unter vorgegebenen Fragestellungen Eigenschaften und Verwendungen ausgewählter Stoffe und präsentieren die Rechercheergebnisse adressatengerecht (K2, K3). stellen neue Materialien aus Kohlenstoff vor und beschreiben deren Eigenschaften (K3). bewerten an einem Beispiel Chancen und Risiken der Nanotechnologie (B4).	1. Recherche zu neuen Materialien aus Kohlenstoff und Problemen der Nanotechnologie (z.B. Kohlenstoff-Nanotubes in Verbundmaterialien zur Verbesserung der elektrischen Leitfähigkeit in Kunststoffen) - Aufbau - Herstellung - Verwendung - Risiken - Besonderheiten 2. Präsentation Die Präsentation ist nicht auf Materialien aus Kohlenstoff beschränkt.	Unter vorgegebenen Recherche- aufträgen können die Schülerinnen und Schüler selbstständig Fragestellungen entwickeln. (Niveau- differenzierung, individuelle Förderung) Die Schülerinnen und Schüler präsentieren ihre Ergebnisse z.B. durch Lernplakate oder Kurzvorträgen bei einem Museumsgang.

• Wiederholung zur Bindungslehre

Leistungsbewertung:

• Präsentation zu Nanomaterialien in Gruppen

Beispielhafte Hinweise zu weiterführenden Informationen:

Eine Gruppenarbeit zu Diamant, Graphit und Fullerene findet man auf den Internetseiten der Eidgenössischen Technischen Hochschule Zürich: http://www.educ.ethz.ch/unt/um/che/ab/graphit_diamant,

Zum Thema Nanotechnologie sind zahlreiche Materialien und Informationen veröffentlicht worden, z.B.:

FCI, Informationsserie Wunderwelt der Nanomaterialien (inkl. DVD und Experimente)

Klaus Müllen, Graphen aus dem Chemielabor, in: Spektrum der Wissenschaft 8/12

Sebastian Witte, Die magische Substanz, GEO kompakt Nr. 31

http://www.nanopartikel.info/cms

http://www.wissenschaft-online.de/artikel/855091

http://www.wissenschaft-schulen.de/alias/material/nanotechnologie/1191771

Einführungsphase - Unterrichtsvorhaben II

Kontext: Vom Alkohol zum Aromastoff

Basiskonzepte (Schwerpunkt):

Basiskonzept Struktur – Eigenschaft, Basiskonzept Donator - Akzeptor

Schwerpunkte übergeordneter Kompetenzerwartungen:

Die Schülerinnen und Schüler können

Kompetenzbereich Umgang mit Fachwissen:

- zur Lösung von Problemen in eingegrenzten Bereichen chemische Konzepte auswählen und anwenden und dabei Wesentliches von Unwesentlichem unterscheiden (UF2).
- die Einordnung chemischer Sachverhalte und Erkenntnisse in gegebene fachliche Strukturen begründen (UF3).

Kompetenzbereich Erkenntnisgewinnung:

- kriteriengeleitet beobachten und erfassen und gewonnene Ergebnisse frei von eigenen Deutungen beschreiben (E2).
- unter Beachtung von Sicherheitsvorschriften einfache Experimente zielgerichtet planen und durchführen und dabei mögliche Fehler betrachten (E4).

Kompetenzbereich Kommunikation:

- in vorgegebenen Zusammenhängen selbstständig chemische und anwendungsbezogene Fragestellungen mithilfe von Fachbüchern und anderen Quellen bearbeiten (K 2).
- chemische Sachverhalte, Arbeitsergebnisse und Erkenntnisse adressatengerecht sowie formal, sprachlich und fachlich korrekt in Kurzvorträgen oder kurzen Fachtexten darstellen (K3).

Kompetenzbereich Bewertung:

- bei Bewertungen in naturwissenschaftlich-technischen Zusammenhängen Bewertungskriterien angeben und begründet gewichten (B 1).
- für Bewertungen in chemischen und anwendungsbezogenen Zusammenhängen kriteriengeleitet Argumente abwägen und einen begründeten Standpunkt beziehen (B 2).

Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen

Inhaltliche Schwerpunkte:

♦ Organische (und anorganische) Kohlenstoffverbindungen

Zeitbedarf: ca. 38 Std. à 45 Minuten

Einführungsphase - Unterrichtsvorhaben II

Kontext: Vom Alkohol zum Aromastoff				
Inhaltsfeld: Kohlenstoffv	Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen			
Inhaltliche Schwerpunkte:		Schwerpunkte übergeordneter	Kompetenzerwartungen:	
Organische (und anorganische) Kohlenstoffverbindungen		UF1 – Wiedergabe		
		 UF2 – Auswahl 		
		 UF3 – Systematisierung 		
		E2 – Wahrnehmung und Me	<u> </u>	
		E4 – Untersuchungen und E	xperimente	
		K2 – Recherche		
Zeitbedarf:		K3 – Präsentation		
 38 Std. a 45 Minuten 		B1 – Kriterien		
		B2 – Entscheidungen		
		Basiskonzepte (Schwerpunkte):		
		Basiskonzept Struktur-Eigenschaft Basiskonzept Donator-Akzeptor		
Sequenzierung	Konkretisierte Kompetenzerwartungen	Lehrmittel/ Materialien/ Verbindliche Absprachen		
inhaltlicher Aspekte	des Kernlehrplans	Methoden	Didaktisch-methodische	
imathoner Aspekte	Die Schülerinnen und Schüler	Methoden	Anmerkungen	
Ordnung schaffen:	nutzen bekannte Atom- und	Test zur Eingangsdiagnose	Anlage einer Mind Map , die im	
Einteilung organischer	Bindungsmodelle zur Beschreibung		Laufe der Unterrichtssequenz	
Verbindungen in	organischer Molekule und	Mind Map	erweitert wird.	
Stoffklassen Kohlenstoffmodifikationen (E6).		-		
		S-Exp.:	Diagnose: Begriffe, die aus der S I	
a) Alkane und	benennen ausgewählte organische Ver-	Löslichkeit von Alkoholen	bekannt sein müssten: funktionelle	
Alkohole als	bindungen mithilfe der Regeln der syste-	und Alkanen in	Gruppen, Hydroxylgruppe,	
Lösemittel	matischen Nomenklatur (IUPAC) (UF3).	verschiedenen Lösemitteln.	intermolekulare Wechselwirkungen,	
			Redoxreaktionen, Elektronendonator	

- Löslichkeit
- funktionelle Gruppe
- intermolekulare Wechselwirkungen: van-der-Waals-Ww. und Wasserstoffbrücken
- homologe Reihe und physikalische Eigenschaften
- Nomenklatur nach ILIPAC
- Formelschreibweise: Verhältnis-, Summen-, Strukturformel
- Verwendung ausgewählter Alkohole
- b) Alkanale, Alkanone und Carbonsäuren– Oxidationsprodukte der Alkanole
- Oxidation von Propanol
- Unterscheidung primärer, sekundärer und tertiärer

ordnen organische Verbindungen aufgrund ihrer funktionellen Gruppen in Stoffklassen ein (UF3).

erklären an Verbindungen aus den Stoffklassen der Alkane und Alkene das C-C-Verknüpfungsprinzip (UF2).

beschreiben den Aufbau einer homologen Reihe und die Strukturisomerie (Gerüstisomerie und Positionsisomerie) am Beispiel der Alkane und Alkohole.(UF1, UF3)

erläutern ausgewählte Eigenschaften organischer Verbindungen mit Wechselwirkungen zwischen den Molekülen (u.a. Wasserstoffbrücken, van-der-Waals-Kräfte) (UF1, UF3).

beschreiben und visualisieren anhand geeigneter Anschauungsmodelle die Strukturen organischer Verbindungen (K3).

wählen bei der Darstellung chemischer Sachverhalte die jeweils angemessene Formelschreibweise aus (Verhältnisformel, Summenformel, Strukturformel) (K3).

beschreiben den Aufbau einer homologen Reihe und die Strukturisomerie (Gerüst-

Arbeitspapiere:

- Nomenklaturregeln und übungen
- intermolekulare
 Wechselwirkungen.

Demonstration von zwei Flaschen Wein, eine davon ist seit zwei Wochen geöffnet.

S-Exp.: pH-Wert-Bestimmung, Geruch, Farbe von Wein und "umgekipptem" Wein.

S-Exp.:

 Oxidation von Propanol mit Kupferoxid / -akzeptor, Elektronegativität,
Säure, saure Lösung.
Nach Auswertung des Tests:
Bereitstellung von individuellem
Fördermaterial zur Wiederholung
an entsprechenden Stellen in der
Unterrichtssequenz.

Wiederholung: Elektronegativität, Atombau, Bindungslehre, intermolekulare Wechselwirkungen

Fächerübergreifender Aspekt Biologie:

Intermolekulare Wechselwirkungen sind Gegenstand der EF in Biologie (z.B. Proteinstrukturen).

Wiederholung: Säuren und saure Lösungen.

Wiederholung: Redoxreaktionen **Vertiefung** möglich: Essigsäureoder Milchsäuregärung.

- Alkanole durch ihre Oxidierbarkeit
- Oxidation von Ethanol zu Ethansäure
- Aufstellung des Redoxschemas unter Verwendung von Oxidationszahlen
- Regeln zum Aufstellen von Redoxschemata
- Alkohol im menschlichen Körper: Biologische Wirkungen des Alkohols, Berechnung des Blutalkoholgehaltes
- Gerüst- und Positionsisomerie am Bsp. der Propanole
- Molekülmodelle
- Homologe Reihen der Alkanale, Alkanone und Carbonsäuren
- Nomenklatur der Stoffklassen und funktionellen Gruppen

isomerie und Positionsisomerie) am Beispiel der Alkane und Alkohole.(UF1, UF3)

erklären die Oxidationsreihen der Alkohole auf molekularer Ebene und ordnen den Atomen Oxidationszahlen zu (UF2).

beschreiben Beobachtungen von Experimenten zu Oxidationsreihen der Alkohole und interpretieren diese unter dem Aspekt des Donator-Akzeptor-Prinzips (E2, E6).

dokumentieren Experimente in angemessener Fachsprache (u.a. zur Untersuchung der Eigenschaften organischer Verbindungen, zur Einstellung einer Gleichgewichtsreaktion, zu Stoffen und Reaktionen eines natürlichen Kreislaufs). (K1)

zeigen Vor- und Nachteile ausgewählter Produkte des Alltags (u.a. Aromastoffe, Alkohole) und ihrer Anwendung auf, gewichten diese und beziehen begründet Stellung zu deren Einsatz (B1, B2). Oxidationsfähigkeit von primären, sekundären und tertiären Alkanolen, z.B. mit KMnO₄.

Gruppenarbeit:

Darstellung von Isomeren mit Molekülbaukästen.

S-Exp.:

Lernzirkel Carbonsäuren.

Concept-Map zum Arbeitsblatt:

Wirkung von Alkohol

S-Exp.: Fehling- und Tollens-

Probe

fakultativ: Historischer Alkotest

 Eigenschaften und Verwendungen 			
Gaschromatographie zum Nachweis der Aromastoffe • Aufbau und Funktion eines Gaschromatographen • Identifikation der Aromastoffe des Weins durch Auswertung von	erläutern die Grundlagen der Entstehung eines Gaschromatogramms und entnehmen diesem Informationen zur Identifizierung eines Stoffes (E5). nutzen angeleitet und selbständig chemiespezifische Tabellen und Nachschlagewerke zur Planung und	Film: Künstlich hergestellter Wein: Quarks und Co. (10.11.2009)_ab 34. Minute Gaschromatographie: Animation Virtueller Gaschromatograph.	Der Film eignet sich als Einführung ins Thema <i>künstlicher Wein</i> und zur Vorbereitung der Diskussion über Vor- und Nachteile künstlicher Aromen.
Künstliche Aromastoffe Beurteilung der Verwendung von Aromastoffen, z.B. von künstlichen Aromen in Joghurt oder Käseersatz	Auswertung von Experimenten und zur Ermittlung von Stoffeigenschaften. (K2). erklären an Verbindungen aus den Stoffklassen der Alkane und Alkene das C-C-Verknüpfungsprinzip (UF2). analysieren Aussagen zu Produkten der organischen Chemie (u.a. aus der Werbung) im Hinblick auf ihren chemischen Sachverhalt und korrigieren unzutreffende Aussagen sachlich fundiert (K4).	Arbeitsblatt: Grundprinzip eines Gaschromatopraphen: Aufbau und Arbeitsweise Gaschromatogramme von Weinaromen. Diskussion: Vor- und Nachteile künstlicher Obstaromen in Joghurt, künstlicher Käseersatz auf	
 Stoffklasse der Ester Funktionelle Gruppe Stoffeigenschaften Struktur-Eigenschaftsbeziehung 	zeigen Vor- und Nachteile ausgewählter Produkte des Alltags (u.a. Aromastoffe, Alkohole) und ihrer Anwendung auf, gewichten diese und beziehen begründet Stellung zu deren Einsatz (B1, B2).	Pizza, etc	
Synthese von Aromastoffen • Estersynthese	beschreiben Zusammenhänge zwischen Vorkommen, Verwendung und Eigenschaften wichtiger Vertreter der		

 Vergleich der Löslichkeiten der Edukte (Alkanol, Carbonsäure) und Produkte (Ester, Wasser) Veresterung als unvollständige Reaktion 	Stoffklassen der Alkohole, Aldehyde Ketone, Carbonsäuren und Ester (UF2) ordnen Veresterungsreaktionen dem Reaktionstyp der Kondensationsreaktion begründet zu (UF1). führen qualitative Versuche unter vorgegebener Fragestellung durch und protokollieren die Beobachtungen (u.a. zur Untersuchung der Eigenschaften organischer Verbindungen) (E2, E4). stellen anhand von Strukturformeln Vermutungen zu Eigenschaften ausgewählter Stoffe auf und schlagen geeignete Experimente zur Überprüfung vor (E3).		
Eigenschaften, Strukturen und Verwendungen organischer Stoffe	recherchieren angeleitet und unter vorgegebenen Fragestellungen die Eigenschaften und Verwendungen ausgewählter Stoffe und präsentieren die Rechercheergebnisse adressatengerecht (K2,K3). beschreiben Zusammenhänge zwischen Vorkommen, Verwendung und Eigenschaften wichtiger Vertreter der Stoffklassen der Alkohole, Aldehyde, Ketone, Carbonsäuren und Ester (UF2).	Recherche und Präsentation (als Wiki, Poster oder Kurzvortrag): Eigenschaften und Verwendung organischer Stoffe.	Bei den Ausarbeitungen soll die Vielfalt der Verwendungsmöglichkeiten von organischen Stoffen unter Bezugnahme auf deren funktionelle Gruppen und Stoffeigenschaften dargestellt werden. Mögliche Themen: Ester als Lösemittel für Klebstoffe und Lacke. Aromastoffe (Aldehyde und Alkohole) und Riechvorgang; Carbonsäuren: Antioxidantien (Konservierungsstoffe) Weinaromen: Abhängigkeit von

	Rebsorte oder Anbaugebiet.
	Terpene (Alkene) als sekundäre
	Pflanzenstoffe

• Eingangsdiagnose, Versuchsprotokolle

Leistungsbewertung:

• C-Map, Protokolle, Präsentationen, schriftliche Übungen

Hinweise:

Internetquelle zum Download von frei erhältlichen Programmen zur Erstellung von Mind- und Concept Mapps:

http://www.lehrer-online.de/mindmanager-smart.php

http://cmap.ihmc.us/download/

Material zur Wirkung von Alkohol auf den menschlichen Körper: www.suchtschweiz.ch/fileadmin/user_upload/.../alkohol_koerper.pdf
Film zum historischen Alkotest der Polizei (Drägerröhrchen):

http://www.chemgapedia.de/vsengine/vlu/vsc/de/ch/16/oc/alkoholtest/alkoholtest.vlu/Page/vsc/de/ch/16/oc/alkoholtest/02_kaliumdichromatoxidation_vscml.html

Film zur künstlichen Herstellung von Wein und zur Verwendung künstlich hergestellter Aromen in Lebensmitteln, z.B. in Fruchtjoghurt:

http://medien.wdr.de/m/1257883200/quarks/wdr_fernsehen_quarks_und_co_20091110.mp4

Animation zur Handhabung eines Gaschromotographen: Virtueller Gaschromatograph:

http://www.chemgapedia.de/vsengine/vlu/vsc/de/ch/3/anc/croma/virtuell_gc1.vlu.html

Gaschromatogramme von Weinaromen und weitere Informationen zu Aromastoffen in Wein:

http://www.forschung-frankfurt.uni-frankfurt.de/36050169/Aromaforschung_8-15.pdf

http://www.analytik-news.de/Fachartikel/Volltext/shimadzu12.pdf

http://www.lwg.bayern.de/analytik/wein_getraenke/32962/linkurl_2.pdf

Journalistenmethode zur Bewertung der Verwendung von Moschusduftstoffen in Kosmetika:

http://www.idn.uni-bremen.de/chemiedidaktik/material/Journalistenmethode%20Moschusduftstoffe.pdf

Einführungsphase - Unterrichtsvorhaben III

Kontext: Kohlenstoffdioxid und das Klima – Die Bedeutung der Ozeane

Basiskonzepte (Schwerpunkt):

Basiskonzept Struktur – Eigenschaft Basiskonzept Chemisches Gleichgewicht

Schwerpunkte übergeordneter Kompetenzerwartungen:

Die Schülerinnen und Schüler können

Kompetenzbereich Erkenntnisgewinnung:

- in vorgegebenen Situationen chemische Probleme beschreiben, in Teilprobleme zerlegen und dazu Fragestellungen angeben (E1).
- unter Beachtung von Sicherheitsvorschriften einfache Experimente zielgerichtet planen und durchführen und dabei mögliche Fehler betrachten (E4).

Kompetenzbereich Kommunikation:

 chemische Aussagen und Behauptungen mit sachlich fundierten und überzeugenden Argumenten begründen bzw. kritisieren (K4).

Kompetenzbereich Bewertung:

- in bekannten Zusammenhängen ethische Konflikte bei Auseinandersetzungen mit chemischen Fragestellungen darstellen sowie mögliche Konfliktlösungen aufzeigen (B3).
- Möglichkeiten und Grenzen chemischer und anwendungsbezogener Problemlösungen und Sichtweisen mit Bezug auf die Zielsetzungen der Naturwissenschaften darstellen (B4).

Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen

Inhaltliche Schwerpunkte:

- (Organische und) anorganische Kohlenstoffverbindungen
- ♦ Gleichgewichtsreaktionen
- Stoffkreislauf in der Natur

Zeitbedarf: ca. 22 Std. à 45 Minuten

Einführungsphase - Unterrichtsvorhaben III

Kontext: Kohlenstoffdioxid und das Klima – Die Bedeutung für die Ozeane				
Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen				
Inhaltliche Schwerpunkt	e:	Schwerpunkte übergeordneter Kompetenzerwar	tungen:	
 Stoffkreislauf in de 	r Natur	 E1 Probleme und Fragestellungen 		
 Gleichgewichtsrea 	ktionen	 E4 Untersuchungen und Experimente 		
		 K4 Argumentation 		
		B3 Werte und Normen		
		B4 Möglichkeiten und Grenzen		
Zeitbedarf: 22 Std. à 45 N	<i>f</i> linuten			
		Basiskonzepte (Schwerpunkt):		
		Basiskonzept Struktur – Eigenschaft		
		Basiskonzept Chemisches Gleichgewicht		
Sequenzierung	Konkretisierte Kompetenzerwartungen	Lehrmittel/ Materialien/ Methoden	Verbindliche	
inhaltlicher Aspekte	des Kernlehrplans		Absprachen Didaktisch-	
	Die Schülerinnen und Schüler		methodische	
	Die Schalenmen und Schaler		Anmerkungen	
Kohlenstoffdioxid	unterscheiden zwischen dem natürlichen	Kartenabfrage Begriffe zum Thema	Der Einstieg dient zur	
 Eigenschaften 	und dem anthropogen erzeugten	Kohlenstoffdioxid	Anknüpfung an die	
 Treibhauseffekt 	Treibhauseffekt und beschreiben		Vorkenntnisse aus	
 Anthropogene 	ausgewählte Ursachen und ihre Folgen	Information Eigenschaften / Treibhauseffekt	der SI und anderen	
Emissionen	(E1).	z.B. Zeitungsartikel	Fächern	
 Reaktionsgleichu 		Barrack was say Dildaga was COO and Kabla	Implizite	
ngen		Berechnungen zur Bildung von CO2 aus Kohle und Treibstoffen (Alkane)	Wiederholung:	
- Umgang mit		- Aufstellen von Reaktionsgleichungen	Stoffmenge <i>n</i> , Masse	
Größengleich- ungen		- Berechnung des gebildeten CO2s	m und molare Masse	
ungen		Vergleich mit rechtlichen Vorgaben	М	
		- weltweite CO2-Emissionen		

		Information Aufnahme von CO2 u.a. durch die Ozeane	
Löslichkeit von CO2 in Wasser - qualitativ - Bildung einer sauren Lösung - quantitativ - Unvollständigkeit der Reaktion - Umkehrbarkeit	führen qualitative Versuche unter vorgegebener Fragestellung durch und protokollieren die Beobachtungen (u.a. zur Untersuchung der Eigenschaften organischer Verbindungen) (E2, E4). dokumentieren Experimente in angemessener Fachsprache (u.a. zur Untersuchung der Eigenschaften organischer Verbindungen, zur Einstellung einer Gleichgewichtsreaktion, zu Stoffen und Reaktionen eines natürlichen Kreislaufes) (K1). nutzen angeleitet und selbstständig chemiespezifische Tabellen und Nachschlagewerke zur Planung und Auswertung von Experimenten und zur Ermittlung von Stoffeigenschaften (K2).	Schülerexperiment: Löslichkeit von CO2 in Wasser (qualitativ) Aufstellen von Reaktionsgleichungen Lehrervortrag: Löslichkeit von CO2 (quantitativ): - Löslichkeit von CO2 in g/l - Berechnung der zu erwartenden Oxoniumionen -Konzentration - Nutzung einer Tabelle zum erwarteten pHWert - Vergleich mit dem tatsächlichen pH-Wert Ergebnis: Unvollständigkeit der ablaufenden Reaktion Lehrer-Experiment: Löslichkeit von CO2 bei Zugabe von Salzsäure bzw. Natronlauge Ergebnis: Umkehrbarkeit / Reversibilität der Reaktion	Wiederholung der Stoffmengenkonzentration c Wiederholung: Kriterien für Versuchsprotokolle Vorgabe einer Tabelle zum Zusammenhang von pH-Wert und Oxoniumionenkonzentration
Chemisches Gleichgewicht - Definition - Beschreibung auf Teilchenebene - Modellvorstellung en	erläutern die Merkmale eines chemischen Gleichgewichtszustands an ausgewählten Beispielen (UF1).	Lehrervortrag: Chemisches Gleichgewicht als allgemeines Prinzip vieler chemischer Reaktionen, Definition Arbeitsblatt: Umkehrbare Reaktionen auf Teilchenebene ggf. Simulation	

Ozean und Gleichgewichte - Aufnahme CO2 - Einfluss der Bedingungen der Ozeane auf die Löslichkeit von CO2 - Prinzip von Le Chatelier - Kreisläufe	beschreiben und erläutern das chemische Gleichgewicht mithilfe von Modellen (E6). formulieren Hypothesen zur Beeinflussung natürlicher Stoffkreisläufe (u.a. Kohlenstoffdioxid-Carbonat-Kreislauf) (E3). erläutern an ausgewählten Reaktionen die Beeinflussung der Gleichgewichtslage durch eine Konzentrationsänderung (bzw. Stoffmengenänderung), Temperaturänderung (bzw. Zufuhr oder Entzug von Wärme) und Druckänderung (bzw. Volumenänderung) (UF3). formulieren Fragestellungen zum Problem des Verbleibs und des Einflusses anthropogen erzeugten Kohlenstoffdioxids (u.a. im Meer) unter Einbezug von Gleichgewichten (E1). veranschaulichen chemische Reaktionen zum Kohlenstoffdioxid-Carbonat-Kreislauf grafisch oder durch Symbole (K3). recherchieren Informationen (u.a. zum	Modellexperiment(e) zum Chemischen Gleichgewicht Vergleichende Betrachtung: Chemisches Gleichgewicht auf der Teilchenebene, im Modell und in der Realität Wiederholung: CO2- Aufnahme in den Meeren Schülerexperimente: Einfluss von Druck und Temperatur auf die Löslichkeit von CO2 ggf. Einfluss des Salzgehalts auf die Löslichkeit Beeinflussung von chemischen Gleichgewichten: Gruppenpuzzle: Einfluss von Druck, Temperatur und Konzentration auf Gleichgewichte, Vorhersagen Erarbeitung: Wo verbleibt das CO2 im Ozean? Partnerarbeit: Physikalische/Biologische Kohlenstoffpumpe Arbeitsblatt: Graphische Darstellung des marinen Kohlenstoffdioxid-Kreislaufs	Hier nur Prinzip von Le Chatelier, kein MWG Fakultativ: Mögliche Ergänzungen (auch zur individuellen Förderung): -Tropfsteinhöhlen (Atta-Höhle) - Kalkkreislauf - Korallen
- Informationen in den Medien - Möglichkeiten zur	Kohlenstoffdioxid-Carbonat-Kreislauf) aus unterschiedlichen Quellen und strukturieren und hinterfragen die Aussagen der Informationen (K2, K4).	 aktuelle Entwicklungen Versauerung der Meere Einfluss auf den Golfstrom/Nordatlantik- 	

Ī	Lösung des		strom	
	CO2-Problems	beschreiben die Vorläufigkeit der		
		Aussagen von Prognosen zum		
		Klimawandel (E7).		
			Podiumsdiskussion	
		beschreiben und bewerten die	- Prognosen	
		gesellschaftliche Relevanz prognostizierter	- Vorschläge zu Reduzierung von	
		Folgen des anthropogenen Treibhaus-	Emissionen	
		effektes (B3).	- Verwendung von CO2	
		zeigen Möglichkeiten und Chancen der		
		Verminderung des	Zusammenfassung: z.B. Film "Treibhaus Erde"	
		Kohlenstoffdioxidausstoßes und der	aus der Reihe "Total Phänomenal" des SWR	
		Speicherung des Kohlenstoffdioxids auf		
		und beziehen politische und		
		gesellschaftliche Argumente und ethische Maßstäbe in ihre Bewertung ein (B3, B4).	Weitere Recherchen	
L	<u> </u>	iviaisstabe in line bewellung ein (bs, b4).		

• Lerndiagnose: Stoffmenge und Molare Masse

Leistungsbewertung:

• Klausur, Schriftliche Übung zum Puzzle Beeinflussung von chemischen Gleichgewichten

Beispielhafte Hinweise zu weiterführenden Informationen:

Ausführliche Hintergrundinformationen und experimentelle Vorschläge zur Aufnahme von CO2 in den Ozeanen findet man z.B. unter:

http://systemerde.ipn.uni-kiel.de/materialien Sek2 2.html

ftp://ftp.rz.uni-kiel.de/pub/ipn/SystemErde/09_Begleittext_oL.pdf

Die Max-Planck-Gesellschaft stellt in einigen Heften aktuelle Forschung zum Thema Kohlenstoffdioxid und Klima vor:

http://www.maxwissen.de/Fachwissen/show/0/Heft/Kohlenstoffkreislauf.html

http://www.maxwissen.de//Fachwissen/show/0/Heft/Klimarekonstruktion

http://www.maxwissen.de/Fachwissen/show/0/Heft/Klimamodelle.html

Informationen zum Film "Treibhaus Erde":

http://www.planet-schule.de/wissenspool/total-phaenomenal/inhalt/sendungen/treibhaus-erde.html

Einführungsphase - Unterrichtsvorhaben IV:

Kontext: Methoden der Kalkentfernung im Haushalt

Basiskonzepte (Schwerpunkt):

Basiskonzept Chemisches Gleichgewicht Basiskonzept Energie

Schwerpunkte übergeordneter Kompetenzerwartungen:

Die Schülerinnen und Schüler können

Kompetenzbereich Umgang mit Fachwissen:

- ausgewählte Phänomene und Zusammenhänge erläutern und dabei Bezüge zu übergeordneten Prinzipien, Gesetzen und Basiskonzepten der Chemie herstellen (UF1).
- die Einordnung chemischer Sachverhalte und Erkenntnisse in gegebene fachliche Strukturen begründen (UF3).

Kompetenzbereich Erkenntnisgewinnung:

- zur Klärung chemischer Fragestellungen begründete Hypothesen formulieren und Möglichkeiten zu ihrer Überprüfung angeben (E3).
- Daten bezüglich einer Fragestellung interpretieren, da- raus qualitative und quantitative Zusammenhänge ab- leiten und diese in Form einfacher funktionaler Beziehungen beschreiben (E5).

Kompetenzbereich Kommunikation:

 Fragestellungen, Untersuchungen, Experimente und Daten nach gegebenen Strukturen dokumentieren und stimmig rekonstruieren, auch mit Unterstützung digitaler Werkzeuge (K1).

Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen

Inhaltliche Schwerpunkte:

♦ Gleichgewichtsreaktionen

Zeitbedarf: ca. 18 Std. à 45 Minuten.

Einführungsphase - Unterrichtsvorhaben IV

Kontext: Methoden der Kalkentfernung im Haushalt						
Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen						
Inhaltliche Schwerpunkte:		Schwerpunkte übergeordneter Kompetenzerwartungen:				
Gleichgewichtsreaktionen		UF1 – Wiedergabe				
		 UF3 – Systematisierung 				
		E3 – Hypothesen				
		E5 – Auswertung				
		K1 – Dokumentation				
Zeitbedarf: 18 Std. a 45 Minuten		Basiskonzepte:				
		Basiskonzept Chemisches Gleichgewicht				
		Basiskonzept Energie				
Sequenzierung inhaltlicher	Konkretisierte	Lehrmittel/ Materialien/ Methoden	Verbindliche Absprachen Didaktisch-methodische			
Aspekte	Kompetenzerwartungen des Kernlehrplans		Anmerkungen			
Kalkentfernung	planen quantitative Versuche (u.a. zur	Brainstorming: Kalkentfernung im	Anbindung an CO2-			
- Reaktion von Kalk mit	Untersuchung des zeitlichen Ablaufs	Haushalt	Kreislauf: Sedimentation			
Säuren	einer chemischen Reaktion), führen					
- Beobachtungen eines	diese zielgerichtet durch und	Schülerversuch: Entfernung von	Wiederholung Stoffmenge			
Reaktionsverlaufs	dokumentieren die Ergebnisse (E2,	Kalk mit Säuren				
- Reaktionsgeschwindig-	E4).					
keit berechnen	stellen für Reaktionen zur	Ideen zur Untersuchung des zeitlichen Verlaufs				
	Untersuchung der	Zeitlichen Venaurs				
	Reaktionsgeschwindigkeit den	Schülerexperiment:				
	Stoffumsatz in Abhängigkeit von der	Durchführung und Auswertung eines	S. berechnen die			
	Zeit tabellarisch und graphisch dar	entsprechenden Versuchs (z.B.	Reaktionsgeschwindigkeiten			
	(K1).	Auffangen des Gases)	für verschiedene			
			Zeitintervalle im Verlauf der			
	erläutern den Ablauf einer chemischen					

	Reaktion unter dem Aspekt der Geschwindigkeit und definieren die Reaktionsgeschwindigkeit als Differenzenquotienten $\Delta c/\Delta t$ (UF1).	(Haus)aufgabe: Ermittlung von Reaktionsgeschwindigkeiten an einem Beispiel	Reaktion
Einfluss auf die Reaktionsgeschwindigkeit - Einflussmöglichkeiten - Parameter (Konzentration, Temperatur, Zerteilungsgrad) - Kollisionshypothese - Geschwindigkeitsgesetz für bimolekulare Reaktion - RGT-Regel	formulieren Hypothesen zum Einfluss verschiedener Faktoren auf die Reaktionsgeschwindigkeit und entwickeln Versuche zu deren Überprüfung (E3). interpretieren den zeitlichen Ablauf chemischer Reaktionen in Abhängigkeit von verschiedenen Parametern (u.a. Oberfläche, Konzentration, Temperatur) (E5). erklären den zeitlichen Ablauf chemischer Reaktionen auf der Basis einfacher Modelle auf molekularer Ebene (u.a. Stoßtheorie nur für Gase) (E6). beschreiben und beurteilen Chancen und Grenzen der Beeinflussung der Reaktionsgeschwindigkeit und des chemischen Gleichgewichts (B1).	Arbeitsteilige Schülerexperimente: Abhängigkeit der Reaktionsgeschwindigkeit von der Konzentration, des Zerteilungsgrades und der Temperatur Lerntempoduett: Stoßtheorie, Deutung der Einflussmöglichkeiten Erarbeitung: Einfaches Geschwindigkeitsgesetz, Vorhersagen Diskussion: RGT-Regel, Ungenauigkeit der Vorhersagen	ggf. Simulation
Einfluss der Temperatur - Ergänzung Kollisionshypothese	interpretieren ein einfaches Energie- Reaktionsweg-Diagramm (E5, K3).	Wiederholung: Energie bei chemischen Reaktionen	
AktivierungsenergieKatalyse	beschreiben und erläutern den Einfluss eines Katalysators auf die	Unterrichtsgespräch: Einführung der Aktivierungsenergie	Film: Wilhelm Ostwald und die Katalyse (Meilensteine

	Reaktionsgeschwindigkeit mithilfe		der Naturwissenschaft und
	vorgegebener graphischer	Schülerexperiment: Katalysatoren,	Technik)
	Darstellungen (UF1, UF3).	z.B. bei der Zersetzung von	
		Wasserstoffperoxid	
Chemisches Gleichgewicht	formulieren für ausgewählte	Arbeitsblatt: Von der	
quantitativ	Gleichgewichtsreaktionen das	Reaktionsgeschwindigkeit zum	
 Wiederholung Gleichgewicht 	Massenwirkungsgesetz (UF3).	chemischen Gleichgewicht	
 Hin- und Rückreaktion 	interpretieren	Lehrervortrag: Einführung des	
MassenwirkungsgesetzBeispielreaktionen	Gleichgewichtskonstanten in Bezug auf die Gleichgewichtslage (UF4).	Massenwirkungsgesetzes	
		Übungsaufgaben	
	dokumentieren Experimente in		
	angemessener Fachsprache (u.a. zur	Trainingsaufgabe: Das Eisen-	
	Untersuchung der Eigenschaften	Thiocyanat-Gleichgewicht (mit S-	
	organischer Verbindungen, zur	Experiment)	
	Einstellung einer		
	Gleichgewichtsreaktion, zu Stoffen und		
	Reaktionen eines natürlichen		
	Kreislaufes) (K1).		
	beschreiben und beurteilen Chancen		
	und Grenzen der Beeinflussung der		
	Reaktionsgeschwindigkeit und des		
Diagnose von Schülerkonzenten:	chemischen Gleichgewichts (B1).		

• Protokolle, Auswertung Trainingsaufgabe

Leistungsbewertung:

• Klausur, Schriftliche Übung, mündliche Beiträge, Versuchsprotokolle